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1. INTRODUCTION

in the study of generalized splines there has been a continuing search for
those properties which are most essential. Schoenberg [12], Greville [6],
Ahlberg, Nilson and Walsh [1], Schultz and Varga [13], Schuitz [14] and
Lucas [10] have pursued an explicit approach which defines generalized
splines as functions which are in the null space of a self-adjoint differentiai
operator except at given grid points where additional continuity or inter-
polation requirements are imposed. DeBoor and Lynch [4], Aticia |3},
Anselone and Laurent [2], Golomb [5], Jerome and Schumaker {8], and
Jerome and Varga [9] have developed an implicit approach which defines
generalized splines as those elements in a Hilbert space X which minimize a
bilinear functional of the form M(g, g) = (Tg, Tg)y over translates of the
null space, N(A), of an associated family of continuous linear functionals /.
Here, 7 is a continuous linear mapping of the Hilbert space X onto a Hilbert
space Y, whose null space is finite dimensional. A consequence of the latier
approach is that a function s is a spline if and ouly if 5 satisfies the orthogo-
nality condition

M(s,g) =0 for all ge N4 (1.0

{8, Theorem 2.1},

It is the purpose of this paper to develop the consequences of beginning
a study of generalized splines, herein denoted by M-splines, by taking the
orthogonality condition (1.1) as their defining characteristic in place of the
earlier minimization condition. This approach will be more general than
any of those considered in the earlier quoted papers, and as Example 1 will
show, actually includes most of the spline characterizations of each of these
papers as special cases. A new class of spline functions related to a continnous
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2 LUCAS

bilinear functional M which is not necessarily symmetric will be introduced
in Example 2. These splines include the generalized L-splines of Schultz [14]
and Lucas [10].

2. PRELIMINARIES

The following formalization of the notion of an M-spline includes the
generalized splines of Anselone and Laurent {2], Golomb {5], and Jerome
and Schumaker [8].

DeriNiTION 1. Let X be a real Hilbert space, and A a family of con-
tinuous linear functionals over X. Associate with /A the linear space
N = {ne X: Mn) = 0 for all Ae A}, which we shall refer to as the null
space of A. Let M(x,y) be a continuous bilinear functional on X x X
such that M(n, n) >0 for all ne N(A). A function s X is said to be an
M-spline if M(s,n) ==0 for all ne N(A). The class of all M-splines for
a fixed /1 is denoted by Sp(M, A).

DeriNITION 2. Let X, A and M be as above, and let x ¢ X. Then any
s € X is said to be a A-interpolate of x if s — x € N(4). If sis also in Sp(M, 4),
then s is said to be an Sp(M, A)-interpolate of x.

Note that s is a A-interpolate of x if and only if A(s) = A(x) for all A€ A.
Also observe that Sp(M, /) is a closed linear space.

In the next section we shall give conditions which insure the existence
of an Sp(M, A)-interpolate of any element in X. If for a given X, A and M,
with M(n,n) >0 for all ne N(A), as in Definition I, we define N; by
N, = {n, € N(A): M(n, , n,) = 0}, then it may easily be seen that Ny is
a closed linear subspace of X

N, is clearly homogeneous. If x, ye Ny, let o= M(x,y) + M(y, x).
Then M(x — oy, x — ay) = —a[M(x,¥) + M(y, x)] = —a®> >0 since
x — oy € N(A). Therefore o = M(x,y) + M(y,x)=0 for all x,yeN;,.
Thus M(x + y, x + y) =0 for any x,ye N;, and N, is additive. By the
continuity of M, Ny is closed.

DErFINITION 3. Let X be a real Hilbert space, A a family of continuous
linear functionals on X, and M a continuous bilinear functional on X x X
such that

M@m,n) =0 for all ne N(A). 2.1
If there is an m > 0 such that
M(n,n) =mn|? for all ne N(A), (2.2)
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then we shall say that the system {X, A, M, N(A)} is well-posed, Denote by
N; the closed linear subspace of N(4),

]Vl - {711 EN(A): 114(”1 N I’ll) = O} (23’:
if
M(x,n) =20 forall xeX, mehiN;, 2.4

and if there exists a closed linear subspace of N(A4), I, , such that
N(A) = N, & N,, 2.5
and an m > 0 such that
M(n, , 1) = m|ny|? forall myeN,, {2.8)
then we shall say that the system {X, A, M, N(A), Ny, Ny} is Ny-posed.

Note that if N; = {0}, {X, 4, M, N(A)} is well-posed if and only if
{X, 4, M, N(A), Ny, N,} is {0}-posed.

ExampLE 1. Let X and Y be real Hilbert spaces, A a family of continuous
linear functionals on X, and T a continuous linear transformation of X
onto Y, such that the dimension of the null space of T, N(T), is finite. Define
the continuous bilinear functional M by

M(x;, x9) = (Tx;, Tx2)y forall x,,x,eX.

Then M(x, x) = Oforallxe X,and N, = N(DHN N(T).Ifne N, , M(x, n) =
(Tx, Tn)y = 0 since ne N(T), so (2.4) is satisfied. Let N, = (Ny,, , the
orthogonal complement of N, in N(A). Since N, is closed and N{T) is finite
dimensional, N, -+ N(T) is closed [7, Prob. 8], and by Lemma 2.1 developsd
by Golomb and Jerome [S], T(¥,) is closed. Thus T maps N, 1 — } onio
the closed subspace T(N,), and therefore 7 restricted to N, has a continuous
inverse by the open mapping theorem. Thus there is an m > 0 such that
I Tnyl| = m i ny || for all ny, € N, . But then M{n, , 7o) = || Ty |5 = mi® || 1, [
for all #,€ N, giving (2.6), and thus the system {X, 4, M, N(1), N, , No}
is Ny-posed. If Ny = N(A)N N(T) = {0} then N(A) = N, , and the system
{X, A, M, N(A)} is well-posed.

3. EXISTENCE AND UNIQUENESS OF A-SPLINES
The following theorem gives conditions which insure the existence and

uniqueness of M-splines. Note that there is no symmetry requirement placed
on M.
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TaeorReM 1. Let X be a real Hilbert space, A& a family of continuous linear
Junctionals on X, and M a continuous bilinear functional on X X X. If the system
{X, A, M, N(A)} is well-posed then for any y € X there is a unique Sp(M, A)-
interpolate s of y, which depends continuously on y.

Proof. Since M is continuous, there is a K > 0 such that
Klixlllnl = M(x,n) forall xeX,neN(). 3.0

Thus for any fixed x € X, M(x, —) is a bounded linear functional on N(A).
Therefore, there is a z e N(4) such that M(x, r) = (z, n) for all n e N(A).
Let Tx =2z Then T is a continuous linear mapping of X into N(4), such that

Klnjp = M@wn,n = Tn,n =mln|? forall ne N(A). (3.2)

Denote by T the restriction of T to N(/). Clearly Ty is I — 1. It will now
be shown that the range of Ty, R(Ty), is actually equal to N(A). Suppose
{n37oe R(Ty) and n;—ne N(A). Then there exist x; e N(A) such that
Tx; = n; . From (3.2),

I Tn| =m|n| for all n € N(A). (3.3)

Since {n;} is a Cauchy sequence, so is {Tx;}. But by (3.3), {x;} must then be
Cauchy also. Let x; — x € N(A). Then since T is continuous, Tx; — Tx,
so Tx = n. This establishes that R(7Ty) is closed. Let #n; be in the orthogonal
complement of R(Ty) in N(A). Then

0= (Tny,n) =min >

Therefore, ||, ]| = 0, so n; = 0, and R(Ty) = N(A). Since Ty isa 1 —1
mapping of N(A) onto N(A), by the open mapping theorem 7y has a
continuous inverse 7y

Now let ye X. Suppose seSp(M,A) and s =y + i with e N(A).
Then M(y + i1, n) = 0 for all n e N(A). Therefore T(p -+ 71) = 0, implying
that ii = — T (Ty). Thus

s=({~Ty Dyey+ N G4
So if there is an Sp(M, A)-interplate of y, s, then s is unique, and is given
as a continuous function of y by (3.4). But for any n e N(A), M(s,n) =
(Ts,n) = (Ty — Ty, n) = 0, so (3.4) actually gives an Sp(M, A)-interpolate
of y, establishing the theorem.
CoroOLLARY 1. Under the conditions of Theorem 1,

X = N(A) @ Sp(M, A).
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Proof. If ye X, y=(y— s}-+ s, where s is the unigue Sp(M, A)-inter-
polate of y.

COROLLARY 2. Under the conditions of Theorem 1, if span {4) has a basis
of dimension n, then dim(Sp(M, A)) = n.

CororLLARY 3 (Anselone and Laurent [2]). In Example 1, if
N(T)N N(A) = {0},

then for every x € X, there is a unique Sp(M, A-interpolare s which depends
continucusly on x.

The following example introduces a class of nonselfadjoint generalized
splines which include the generalized £-splines of Schultz {14] and Lucas [10]
as special cases.

ExampLE 2. Let X be the Sobolev space Wn2{q, &1 of all functions fin
Cn-a, b] whose n — 1st derivative is absolutely continuous and D7f'e L¥a, b,
with inner product

(foh= 3 | IDF@OIDE] .

i=0 v
Define a continuous bilinear functional M on ¥ X X by

n

[d
M, =Y [ b OIDen]dr,

i=0 ° 0
where b,,(1) = w, a < t < b for some w > 0, and where the b,; are bounded,
real-valued measurable functions on [a, b1, 0 <i,j < n. Suppose A is a
family of continuous linear functionals over X which includes functionals of
the type A (/) = f(x),x € [a,5],for all f e X. Denote the set of x € {a, 5] for which
there is such a A by 4 and let 4 be the greatest distance between the poiats
into which [a, b]is thus partitioned. I't is shown in [11] that there exist positive
constants e and m such that if 4 <e, M(u, u) > m | u|},? for all v e N(A).
Thus the system {W=2[q, b], A, M, N(A)} is well-posed for any such 4,
and by the previous theorem for any function fe W 2[q, &] there is a unique
Sp(M, A)-interpolate which depends continuously on /. Some properties and
applications of these nonselfadjoint generalized splines are developed in [11].
For their numerical utilization it is necessary to have some characterization

results. These have also been developed.

The next theorem separates the questions of exisience and uniqueness of

M-splines, generalizing Theorem 1.

G40/5/1-3
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THEOREM 2. Let X be a real Hilbert space, A a family of continuous linear
Jfunctionals on X, and M a continuous bilinear functional on X X X. Suppose
there is a closed subspace of N(A), N, , such that the system {X, A, M, N(A),
Ny, Ny} is Ny-posed, where N, is defined by (2.3). Then for any y € X there is
a unigue Sp(M, A)-interpolate s of y in y + N, which depends continuously on y.
Moreover, any other interpolate of y, §, is an Sp(M, A)-interpolate of y if and
onlyif s —se Ny .

Proof. By hypothesis there is a closed subspace N, of N(4) such that (2.5)
and (2.6) are valid. Let 4, be the orthogonal complement of N, in X. Then 4,
can be considered as a family of continuous linear functionals on X whose
null space, N(4,), is N,. Thus, by (2.6) the system {X, A, , M, N(A,)} is
well-posed (where N(4,) = N,); so by Theorem 1 for every y € X there is a
unique Sp(M, A,)-interpolate s of y which depends continuously on y. This
gives a unique A, € N, such that s = y + 7, and M(s, n,) = Oforalln,e N, .
By (2.4) M(s, n,) = Ofor alln, € N, , and by (2.5) any n € N(A4) is of the form
n = n; + ny with n, € N, ny € N, . Therefore s is a unique Sp(M, A)-inter-
polateof yiny + N, .

Next it will be established that

M ,n) =0 forall n, e N,,ne N(A. (3.5)

Let meN,,n=n, + @y N(A) with A, e N,,A, € N,. Then by (2.4),
M(ny ,n) = M(n, ,#i,). Consider for any real o, M(fiy + any , fly + any) =
M(iy , 7y) -+ aM(ny , 7,) == 0 by (2.4), (2.3) and (2.1). Then M(n, , #,) must be
zero, or the above inequality could not hold for all «, establishing (3.5).

Now if s is the unique Sp(M, A)-interpolate of y in y ++ N, , and § is any
other Sp(M, A)-interpolate of y, then § — s N(A), and ME — s,n) =0
for all ne N(A). Letting n = 5 — s, we see by (2.3) that 5 —seN;. On
the other hand, if s is as above and § — s € N, , then § = s + #; for some
fi, € N, and M5, 1) = M(s,n) +~ M, ,n) = 0 for all ne N(A) by (3.5)
and Definition 1, so § is an Sp(M, A)-interpolate of y.

CoROLLARY 4. Under the conditions of Theorem 2,

X = N, ® Sp(M, A).

COROLLARY 5. Under the conditions of Theorem 2, if span(1) has a basis of
dimension v, and dim(N,) = r, , then dim(Sp(M, A)) =r -+ r; .

The following corollary shows that if M is symmetric and nonnegative
over all of X, the orthogonality condition (2.4) is always satisfied, giving
again the conclusions of Theorem 2.

COROLLARY 6. Let X be areal Hilbert space, /A a family of continuous linear
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Junctionals on X, and M a continuous symmetric bilinear functionalf on X x X
such that M(x,x) =0 for all xeX. Let Ny = {n, € N(A): M(ny , ny) = 0}
and suppose that there is some closed subspace of N(A), N, , such that N(4) =
Ny @& N, and M is positive definite on N, . Then for any y € X, there is a unigue
So(M, A)-interpolate s of y in y + N,, which depends continuousiy on y.
Moreover, any other interpolate of y. §, is an Sp(M, M)-interpolaie of 3 if and
only if § — se N .

Proof. Except for the orthogonality condition (2.4), the system
{X, A4, M, N(A), Ny, N,} is Ny-posed. But (2.4) does hold, since for anv
xeX,meN,, M(x + any , x + amy) = M{x, x} + 20 (x,n) >0 for ali
real o, implying that M(x, n,) = 0.

CoRrOLLARY 7 (Golomb [5], Jerome and Schumaker [8]). In Example 1,

Jor any x € X there exists an Sp(M, A)-interpolate s, and any other interpolare
of x, 3, is an Sp(M, A)-interpolate of x if and only if § — 5 € N(ADYn N(T).

4. SUFFICIENT CONDITIONS FOR WELL-POSED AND N,-POSED SYSTEMS

The next result gives a very useful condition which insures the existence
of the space N, of Definition 3 and Theorem 2.

TueoreMm 3. Let X, A, M and Ny be given as in Definition 3 with M and
Ny satisfying (2.1), (2.3) and (2.4). Suppose there is a closed subspace of

NN, Ny, such that Ny + N, is of finite codimension in N(A), and a rm; > 0
such that

M(ny ,ny) = myilns|lF  forall nyeN,. 4a.n

Then there exists a closed subspace of N(A), N, , containing N, such that ﬂzé
system {X, A, M, N(A), N, , N,} is Ny-posed.

Proof. Since the codimension of N; + N, in N{A) is finite, and
Ny Ng = {0} by (2.3) and (4.1),

N(A) = N, ® N, & N, (4.2

for some finite dimensional subspace of N(4), ¥, . Tt will now be shown that
N, = N3 @ N, satisfies (2.6) as well as (2.5), demonstrating that the system
(X, 4, M, N(1), N, , N,} is Ny-posed. It will suffice to show this for the case
where N, is one dimensional.

Suppose N, consists of the span of some n, € N(A) — (N; @ N;). Let
A, be the orthogonal complement of N, in X. Then 4, can be considered
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to be a family of continuous linear functionals on X, with null space
N(A3) = N, . Now let us define a continuous bilinear functional on X X X,
M, by

Myx,y) = §{M(x,y) + M(y,x)]  forall x,yeX. (4.3)

By (4.1) and (4.3),
M{ny , 1) = M(ng , n3) > my || 13| forall nge N(A3) = Ny. (4.4)

By (4.4) the system {X, A;, M,, N(4;)} is well-posed, so by Theorem 1,
there is a unique Sp(M,, Aj)-interpolate of n,,5en, + N,, satisfying

2M (5, ng) = M(5, n;) + M(ng ,5) =0 forall nzeN;. (4.5)
Let m = § min(M(5, 3)/)) 5112, #,). Then

M(os + ng, a8 -+ ng) = 2M(S, 5) + a[M, ng) -+ M(n , 5] + M(n, , ny)
= 2m(o | 517 + i ng I (4.6)

= mlos + m |,

by use of (4.5) and the parallelogram inequality. But span{n, + N} =
span{s 4 N}, so (4.6) establishes that M is positive definite on N, @ N;.
If dim(N,) > 1, the above argument may be repeated.

In the literature [9, 13] one usually finds one set of hypotheses for the unique
existence of spline interpolates and an additional one, usually in the form of
the mesh norm being sufficiently small, for error bounds. Theorem 3 can be
used [11] to show that the second requirement in all such cases is redundant
and that in fact unique existence implies that error bounds hold. This will be
treated elsewhere.

The next example utilizes Theorem 3 to demonstrate the existence of
nonselfadjoint splines which are not unique.

Exampie 3. Let X = W}?0, 11n S where S is the set of all functions
defined on [0, 1] which are symmetric about the line x = 1/2 and Wg#[0, 1]
is the subset of all u € W}?[0, 1] such that u (0) = u (1) = 0. Let / consist
just of the linear functional A, where

M) = f(1/6) — f(1/2) + f(5/6).
and let

1
M(u, v) = f wv — mu'v + mur’ — 7w dt.
0

Then M(u, u) = j; (u')? — 7% dr >0 for all ue X by the Rayleigh Ritz
inequality with M(u, u) = 0 if and only if # is a multiple of sin ##. Clearly,
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since A(sin 7¢) = 0, N, = span{sin #¢}. A straightforward integration by
parts shows that M(u, sin #t) = 0 for all U< X, so (2.4) holds in addition
to (2.1) and (2.3). For the purpose of applying Theorem 3, Iet Ay u} = u(1/2}
for all ucX and N, = {uc N(A): ;(#) = 0}. Note that N, + N, is of
codimension 1 in N(A). Another application of the Rayleigh thz inequality
shows that there is a positive m such that M(u, ) = m| ui? for allzc N,.
Hence by Theorem 3 there exists a closed subspace of X, N,, such that
X = N; @ N, and the system {X, 4, M, N(1), ¥, , N,} is N;-posed. More-
over, by Theorem 2 for every u € X there exists & unique Sp{#4, A)-interpolate
s of u in u + N, which depends continuously on # and any other interpclate
of u, §,1s an Sp(M, A)-interpolate of u if and only if § = 5 + « sin 7t for some
real number a.

TrHEOREM 4. Let X be a real Hilbert spae, A a family of continuous
linear functionals on X, and M a continuous bilinear functional on X x X.
Suppose there is a closed subspace of N(A), N,, such that the system
{X, 4, M, N(A), Ny, Ny} is Ny-posed. If A, D A is another family of con-
tinuous linear functionals on X, and if the codimension (codim) of N(A,) in
N(A) is finite, then there exists a closed subspace NV such that the system
{X, Ay, M, N(A), NV, NP} is NV-posed.

Proof. Let N, = Ny N(A) and Ny = N, N(4;). Then with
NP = {ne NA): M(n, n) = 0}, NV = N;~. Since codim(N(/4,)) in N4} is
finite it follows that codim(N;") in N, is finite and codim{N,) in N, is finite.
Thus since N(A) =N, & N,, and NV CN,, N, C N, , Nj¥ - N, must be
of finite codimension in N(;), and M is positive definite on Ny . Therefore
by Theorem 3, there exists a closed subspace of N(4,), Ni¥, containing N,
such that the system {X, A;, M, N(A1;), NP, NP} is NV-posed.

COROLLARY 8. Let X be a real Hilbert space, {/A,}7; be a nested sequence
of families of continuous linear functionals such that A, 2 A; and
codim(N(A4,.,)) in N(A,) is finite for i = 0, and let M be a continuous bilinear
Junctional on X X X such that there is a closed subspace of N(Ay), Ni¥, such
that the system {X, Ay, M, N(A,), NJ®, Ni®} is N{9-posed. Then for ali
i>0 there is a closed subspace of N(A,). NP, such that the system
X, A4,, M, N(A4), N®, NP is NiP-posed, where

N = {ne N(A): M(n,n) = 0}.

Moreover, if for any iy >0, Ni% = {0}, then for ali i >i,, the system
X, A, , M, N(A)} is well-posed, and no restriction need be placed on
codim(N(4,9)) in N(4, ).

An important application of this corollary is the situation where the system
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{X, Ay, M, N(4y), NjO, N is N{®-posed and 4, is formed from A;
by augmenting A, with one continuous linear functional not in the span of
A;, 1> 0. Then the system {X, A, , M, N(4,), N?, N} is N{?-posed for
all { > 0. Note that in this application it does not matter whether or not the
dimension of the span of A, is finite, and if N{® = {0}, then 4,,; may be
formed from /; by augmenting /; with any set of continuous linear func-
tionals, for all 7 >= i, .

5. EXTREMAL RESULTS

For a given real Hilbert space X and continuous bilinear functional on
X x X, M, it will be useful to associate another continuous bilinear functional
on X X X, M,, defined by

Mx,y) = $[M(x,y) + M(y,x)] forall x,yeX .1

Then M (x, x) = M(x, x) for all xe X, and if M is symmetric, M (x, y) =
M(x, y) for all x, ye X. The following lemma generalizes a result usually
referred to as the “first integral relation™ [13, Theorem 4].

LemMA 1. Let X be a real Hilbert space, A a family of continuous linear
Junctionals on X, and M a continuous bilinear functional on X x X such that
M(n, n) > 0 for all n e N(A). Then for any x € X if s is an Sp(M , A)-inter-
polate of x,

M(x, x) = M(x — s, x — 5) + M(s, ). (5.2)
Proof. Since s is an Sp(M, , A)-interpolate of x, M (s, x — s) = 0, so

M(x,x) = M(x — s, x — 85) + 2M (s, x — 5) + M(s, s)
= M(x — 5, x — 5) + M(s, 5).

The next theorem gives an extremal result for M-splines generalizing
[10, Theorem 7].

THEOREM 5. Let X be a real Hilbert space, A a family of continuous linear
Junctionals on X, and M a continuous bilinear functional on X X X. Suppose
M(n, n) = 0 for all ne N(A), and that there is a closed subspace N, of N(A}
such that the system {X, A, M, , N(1), Ny, N,} is Ni-posed where

Ny = {n, € N(A): M(n; ,n) = 0}
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Then for any ye X;

(i) there is at least one Sp(M, , A)-interpolate s of y,
(1) M(s,5) = ming{M(x, x): x is a A-interpolate of y}, {5.3)
(i) if x is a A-interpolate of y, and M{x, x) = M{s, 5},

then x — s € Ny and x is also an Sp(M , , A)-interpolate of y.

Proof. Property i follows immediately from Theorem 2. Suppose x is
any -interpolate of y. Then s is also an Sp(M, , A)-interpolate of x, and
since x — s N(A), M{(x — s, x — s) = 0 and (5.2) of the lemma implies
that M(x, x) > M(s, s) giving property (ii). If, in addition, M(x, x) = M{s, s},
then (5.2) of the lemma implies that M{x — 5, x — 5)=0,s0 x —se N,
and by Theorem 2, x € Sp(M, , /).

COROLLARY 9. Under the hypothesis of Theorem 3, if Ny = {0} then the
Sp(M, , Ay-interpolate, s, of y gives the unique sofution 1o the extremal
problem (5.3).

CoroLLARY 10. Let X be a real Hilbert space, A a family of continuous
linear functionals on X, and M a continuous bilinear functional on X X X
such that M(x,x) = 0 for all x< X. Suppose there are closed subspaces of
N(A), N, and N, , such that N(A) = N, & Ny, M(n, , ny) = Qforall ny e Ny,
and Mny , 1) = mi\ m, 1 for all ng € Ny . Then for any y € X, there is at least
one Sp(M, , A)-interpolate s of y, and the extremal problem (5.3} is solved by s.
Moreover, if x is any other A-interpolate of y which minimizes M as in (5.3},
then xe Sp(M,, D and x — se N, .

Proof. Eguations (2.1), (2,3), (2.5) and (2.6) are explicitly satisfied by
M, N; and N, . Just as in the proof of Coroliary 6,

Mix,xy = MJ{x,x) =0 for all x € X implies that M (x, n) = 0

for all x € X, ny € N; . Therefore the orthogonality condition (2.4) also holds
and the system {X, 4, M,, N(A), Ny, Ny} is Ny-posed. Thus Theorem 3
applies.

Theorem 5 and Corollary 9 are useful in identifying M-splines with other
spline characterizations. For instance in Exampie 2 let M be given by

M) = Y, [ a@DuOD0)

let A be such that the system {W™3a, b}, 4, M, N(A)} is well-posed, and lef
s be the unique Sp(M, MD-interpolate of f € W»Hg, b1. If A consists solely
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of the Hermite type functionals considered in [10], then Theorem 7 of [10]
asserts that the element minimizing (5.3) is the unique generalized L-spline
interpolate § of £, and hence § = s by Corollary 9. Similar arguments show
that the y-elliptic splines of Schultz [14], the R-splines of Golomb [5] and
the Lg-splines of Jerome and Schumaker [8] are also special cases of M-splines.

The next result generalizes Theorem 6 of [10], and also implicitly offers
a generalization of the property P used in that paper.

THEOREM 6. Let X be a real Hilbert space and {/A; :i > 0} be a nested
sequence of families of continuous linear functionals on X, such that A, ; D A,
and the codimension of N(A,.,) in N(A,) is finite, for all i = 0. Suppose M is
a continuous bilinear functional on X X X such that M(x,x) = 0 for all
x € N(Ay), and the system {X, Ay, My, N(A,), N{®, N} is Ny-posed. Then
forany xe X, and all i = 0;

(i) the system {X, A;, M, N(A,), N, N{ is N{¥-posed,
(i) there is ar least one Sp(M, , A,)-interpolate s; of x,
(i) Mx —s;,x — s) = min{M(x — §, x — 3):

seSp(M,, A) N U}, where U = { y: y is a Ay-interpolate of x}.
If M(y,y) =0 forall y € X, then
iv) M@ —s;,x—s;) = min{M(x — §, x — 5): § € Sp(M,, A)}.

Proof. Property i follows immediately from Corollary 8, and property (ii}
follows from property (i) and Theorem 2. Suppose 5 & Sp(M,, 4,). Then
s; — § Is an Sp(M, , A,)-interpolate of x — §, so substituting x — § for x
and s; — § for s in (5.2) of Lemma 1 gives

M(x—5§x—35) = Mx—s;,x—35)+ M(s; — 5,5, — 5. (5.4

If sis also in U, then s; — § € N(A,) so M(s; — §,s; — §) > 0, and from (5.4),
M(x—5,x—358) = M(x —s;, x — s;) establishing property (iii). Similarly,
if M(y,y)>=0 for all yeX, then again M(s; —3§,s;, —5) > 0 giving
property (iv) from (5.4).

6. CONVERGENCE OF M-SPLINES

The next theorem generalizes a result of Golomb [5, Corollary 7.1].

THEOREM 7. Let X be a real Hilbert space, {A,\3, a nested sequence of
Sfamilies of continuous linear functionals on X with A, 2A4,,i >0, and
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M a continuous symmetric bilinear functionai on X x X. Suppose the system
{X, Ay, M, N(Ap)} is well-posed, and let A, = Useo A; . Then for all i =6
and every x € X, there is a unique Sp(M, A )-interpolate s; of x, and a unigue
Sp(M, A )-interpolate of x, 5. , where {s;} and s, depend continuously on x.
Moreover, im,,,, §; = S, and lim,. M(s; , 5;) = M(5x , 5)-

Proof. The system {X, A,, M, N(A,)} is well-posed, so there exists
an m > 0 such that

M@,n) =m|nl? for all ne N(). {6.1)

Hence (6.1) also holds for alln € N(A,.) and all n € N(4;), and thus the systems

{X,A,, M, N(A,)} and {X, A;, M, N(1,)} for all i >0 are well-posed,

and the first part of the theorem follows from Theorem 1. Since s, is a

A-interpolate of s;eSp(M, 4;) for all j >0, and if j >=7/>0, 5, is 2
. -interpolate of s, € Sp(M, A,), property (11) of Theorem 5 gives

M(s, ,8.) = M(s;, 85 = M(s;, 5;) forall j=i>=0 (62

Lemma 1 then gives,

M(Sﬂ 855 85 S) - M(SJ H S) JW(SZ- > Sz’): {63

et

since 5, is an Sp(M, A,)-interpolate of s;,. From (6.2) and (6.3) it follows
that 'lim; ;. M(s; — s;,5 — §) = 0, and by (6.1), {s;}7, is a Cauchy
sequence. Let s® = lim,,, s, . Then it may easily be seen that s, = 5,
and the result follows.

As an application of this theorem, consider a variation of Example 2 with
{42, being a nested sequence of families of continuous linear functionals
on Wna, b, n > 1, and {47, the associated partition norms. Suppose
4, — 0. Then there is an i, > 0 such that the system {W™2g, b1, 4, , M,
N(/l )} is well-posed, and for every /'€ W?[a, b] there is a unique Qp(ﬂ[.a A
mt@rpolate s; for all i > i,. Let 5. be the Sp(M, U, /,)-interpolate of 7,
and let x € [a, b]. Since 4, — 0, there is a sequence {x;} with x, € 4, such that
x; = x. But f(x;) = sx)) = s.(x;), so f(x) = s..(x) by the continuity of
fand s, . Therefore f=s,, , and by Theorem 7

lim {f — s: [l = ©. (6.4)
The convergence in the Sobolev nerm given by (6.4) may be easily shown

to imply uniform convergence of Dis;to Difonfa, b] for 0 <j<{n —1
and L? convergence when j = n.
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