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1. INTRODUCTION

In the study of generalized splines there has been a continuing search for
those properties which are most essential. Schoenberg [I2J, GreviHe [6],
Ahlberg, Nilson and Walsh [1], Schultz and Varga [13], Schultz [14] and
Lucas [LO] have pursued an explicit approach which defines generalized
splines as functions which are in the null space of a self-adjoint differential
operator except at given grid points where additional continuity or inter
polation requirements are imposed. DeBoor and Lynch [4J, Atteia [3],
Anselone and Laurent [2J, Golomb [5J, Jerome and Schumaker [8J, and
Jerome and Varga [9) have developed an implicit approach which defines
generalized splines as those elements in a Hilbert space X which minimize a
bilinear functional of the form M(g, g) = (Tg, Tg)y over translates of the
null space, N(A), of an associated family of continuous linear functionals ./1.
Here, T is a continuous linear mapping of the Hilbert space X onto a Hilbert
space Y, whose null space is finite dimensional. A consequence of the latter
approach is that a function s is a spline if and only if s satisfies the orthogo
nality condition

M(s, g) 0 for all g E N(A) (1.1)

[8, Theorem 2.1].
It is the purpose of this paper to develop the consequences of beginning

a study of generalized splines, herein denoted by _M-splines, by taking the
orthogonality condition (1.1) as their defining characteristic in place of the
earlier minimization condition. This approach will be more general than
any of those considered in the earlier quoted papers, and as Example 1 win
show, actually includes most of the spline characterizations of each of these
papers as special cases. A new class of spline functions related to a continuous
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bilinear functional M which is not necessarily symmetric will be introduced
in Example 2. These splines include the generalized L-splines of Schultz [14]
and Lucas [10].

2. PRELIMINARIES

The following formalization of the notion of an M-spline includes the
generalized splines of Anselone and Laurent [2], Golomb [5], and Jerome
and Schumaker [8].

DEFINITION 1. Let X be a real Hilbert space, and A a family of con
tinuous linear functionals over X. Associate with A the linear space
N(A) = {n EX: A(n) = 0 for all AEII}, which we shall refer to as the null
space of A. Let M(x, y) be a continuous bilinear functional on X X X
such that M(n, n) ~ 0 for all n E N(A). A function SEX is said to be an
M-spline if M(s, n) = 0 for all n E N(A). The class of all M-splines for
a fixed A is denoted by Sp(M, A).

DEFINITION 2. Let X, A and M be as above, and let x E X. Then any
SEX is said to be a A-interpolate of x if s - x E N(A). If s is also in Sp(M, A),
then s is said to be an Sp(M, A)-interpolate of x.

Note that s is a A-interpolate of x if and only if A(S) = A(X) for all AE A.
Also observe that Sp(M, A) is a closed linear space.

In the next section we shall give conditions which insure the existence
of an Sp(M, A)-interpolate of any element in X. If for a given X, A and M,
with M(n, n) ~ 0 for all n E N(A), as in Definition 1, we define N I by
N1 = {11} E N(A): M(ni , nJ = O}, then it may easily be seen that N1 is
a closed linear subspace of X:

N I is clearly homogeneous. If x, y E N 1 , let <X = M(x, y) + M(y, x).
Then M(x - ay, x - ay) = -a[M(x, y) + M(y, x)] = -a2 ~ 0 since
x - ay E N(A). Therefore a = M(x, y) + M(y, x) = 0 for all x, y E N1 •

Thus M(x + y, x + y) = 0 for any x, y E N1 , and N I is additive. By the
continuity of M, NI is closed.

DEFINITION 3. Let X be a real Hilbert space, A a family of continuous
linear functionals on X, and M a continuous bilinear functional on X X X
such that

M(n, n) ~ 0

If there is an Tn > 0 such that

M(n, n) ~ Tn II n 11
2

for all n E N(A).

for all n E N(A),

(2.1)

(2.2)
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then we shall say that the system {X, A, lvI, N(A)} is ·well-posed. Denote by
N1 the closed linear subspace of N(A),

If

(2.3)

M(X,111) = 0 (2.4)

and if there exists a closed linear subspace of N(A), N2 , such that

(2.5)

and an m > 0 such that

M(n2 ,n2) ?: m II 112 112

then we shall say that the system {X, /1, M, N(A), Nl , N 2} is NrPosed.

Note that if N1 = {O}, {X, A, lvI, N(A)} is well-posed if and only if
{X, .11, lvI, N(A), Nl , N 2} is {OJ-posed.

EXAMPLE 1. Let X and Y be real Hilbert spaces, A a family of continuous
linear functionals on X, and T a continuous linear transformation of X
onto Y, such that the dimension of the null space of T, N(T), is finite. Define
the continuous bilinear functional M by

for all Xl' X 2 EX.

Then lvI(x, x) ;?; 0 for all x E X, and Nl = N(A} n N(T). Ifn E Nl , M(x, n) =
(Tx, Tn)y = 0 since n E N(T), so (2.4) is satisfied. Let N 2 = (Nl)"JvVll , the
orthogonal complement of Nl in N(.I1). Since N 2 is closed and N(T) is finite
dimensional, N 2 + N(T) is closed [7, Prob. 8], and by Lemma 2.1 developed
by Golomb and Jerome [5], T(N2) is closed. Thus T maps N 2 1 - 1 onto
the closed subspace T(N2), and therefore T restricted to N 2 has a continuous
inverse by the open mapping theorem. Thus there is an 111 > 0 such that
ii Tn2 11 ?: m I! n2 II for all n2 E N2 • But then lvI(n2 , n2) = Ii Tn2 li2y ?: m2 i! 112 112
for all 112 E N 2 giving (2.6), and thus the system {X, /1, lvI, N(.1), l-ll , N2}

is Nl-posed. If N 1 = N(A) n N(T) = {O} then N(A) = N 2 , and the system
{X, A, lvI, N(A)} is well-posed.

3. EXISTENCE AND UNIQUENESS OF M-SPUNES

The following theorem gives conditions which insure the existence and
uniqueness of M-splines. Note that there is no symmetry requirement placed
onM.
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THEOREM 1. Let X be a real Hilbert space, A afamily ofcontinuous linear
functionals on X, and M a continuous bilinearfunctional on X X X.lfthe system
{X, A, M, N(A)} is well-posed then for any y E X there is a unique Sp(M, A)
interpolate s ofy, which depends continuously on y.

Proof Since M is continuous, there is a K > 0 such that

KII xliii n II ~ M(x, n) for all x E X, n E N(A). (3.1)

Thus for any fixed x E X, M(x, -) is a bounded linear functional on N(A).
Therefore, there is a Z E N(A) such that M(x, n) = (z, n) for all n E N(A).
Let Tx = z. Then T is a continuous linear mapping of X into N(A), such that

KII n 112 ~ M(n, n) = (Tn, n) ~ In II n 11
2 for all n E N(A). (3.2)

Denote by TN the restriction of T to N(/l). Clearly TN is 1- 1. It will now
be shown that the range of TN, R(TN), is actually equal to N(A). Suppose
{ni}f~o E R(TN) and ni -+ n E N(A). Then there exist Xi E N(A) such that
TXi = ni . From (3.2),

II Tn II ~ m II n II for all n E N(A). (3.3)

Since {ni} is a Cauchy sequence, so is {TXi}' But by (3.3), {Xi} must then be
Cauchy also. Let Xi -+ X E N(A). Then since T is continuous, TXi -+ Tx,
so Tx = n. This establishes that R(TN) is closed. Let n1 be in the orthogonal
complement of R(TN ) in N(A). Then

Therefore, II n1 11 = 0, so n1 = 0, and R(TN) = N(A). Since TN is a 1 - 1
mapping of N(A) onto N(A) , by the open mapping theorem TN has a
continuous inverse Til.

Now let y E X. Suppose s E Sp(M, A) and s = y + n with n E N(A).
Then M(y + ii, n) = 0 for all n E N(ll). Therefore T(y + ii) = 0, implying
that n = -TJt(Ty). Thus

s = (I - Ti/ T) y E Y + N(A). (3.4)

So if there is an Sp(M, A)-interplate of y, s, then s is unique, and is given
as a continuous function of y by (3.4). But for any n E N(A), M(s, n) =
(Ts, n) = (Ty - Ty, n) = 0, so (3.4) actually gives an Sp(M, A)-interpolate
of y, establishing the theorem.

COROLLARY 1. Under the conditions of Theorem 1,

X = N(A) E8 Sp(M, A).
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Proof If y E X, Y = (y - s) + s, where s is the unique Sp(iVI, A)-inter
polate of y.

COROLLARY 2. Under the conditions of Theorem 1, if span (A) has a basis
ofdimension n, then dim(Sp(M, A» = n.

COROLLARY 3 (Anselone and Laurent [2]). In Example 1, if

N(T)n N(A) = {OJ,

then for every x E X, there is a unique Sp(M, A)-interpolate s which depends
continuously on x.

The following example introduces a class of nonselfadjoint generalized
splines which include the generalized L-splines of Schultz [14] and Lucas [10]
as special cases.

EXAMPLE 2. Let X be the Sobolev space Wn .2 [a, b] of all functions f in
en-l[a, b] whose n - 1st derivative is absolutely continuous and DyE L 2[a, b],
with inner product

n.b

(j, g)n = L I [D1(t)][Dig(t)] dt.
;=0 •.0.

Define a continuous bilinear functional M on X X X by

M(j, g) = f rbu(t)[D1(t)][Dig{t)] dt,
i,j=O 4' a

where bnn(t) ;;?; w, a ~ t ~ b for some w > 0, and where the bij are bounded,
real-valued measurable functions on [a, b], 0 ~ i,j ~ n. Suppose 11 is a
family of continuous linear functionals over X which includes functionals of
the type 1\ (f) = f(x),x E [a,b],for allfE X. Denote the set of x E [a,b] for which
there is such a ;\ by Ll and let J be the greatest distance between the points
into which [a, b] is thus partitioned. It is shown in fII] that there exist positive
constants E and m such that if J < '£', M(u, u) ;;?; 111 illl for all U E Nfll).
Thus the system {wn,2[a, h], A, M, N(A)} is well-posed for any such /1,
and by the previous theorem for any functionfr=: W"·2[a, b] there is a unique
Sp(M, A)-interpolate which depends continuously onf Some properties and
applications of these nonse1fadjoint generalized splines are developed in (11).
For their numerical utilization it is necessary to have some characterization
results. These have also been developed.

The next theorem separates the questions of existence and uniqueness of
M-splines, generalizing Theorem 1.
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THEOREM 2. Let X be a real Hilbert space, A a family of continuous linear
functionals on X, and M a continuous bilinear functional on X X X. Suppose
there is a closed subspace of N(A) , N 2 , such that the system {X, A, M, N(A),
N l , N 2} is Nl-posed, where N l is defined by (2.3). Then for any y EO X there is
a unique Sp(M, A)-intelpolate s ofy in y + N 2 which depends continuously on y.
Moreover, any other interpolate ofy, s, is an Sp(M, A)-interpolate ofy if and
only ifs - S EO Nl .

Proof By hypothesis there is a closed subspace N 2 of N(ll) such that (2.5)
and (2.6) are valid. Let A 2 be the orthogonal complement of N 2 in X. Then A 2

can be considered as a family of continuous linear functionals on X whose
null space, N(A2) , is N 2 • Thus, by (2.6) the system {X, A 2 , M, N(A2)} is
well-posed (where N(A2) = NJ; so by Theorem 1 for every y EO X there is a
unique Sp(M, AJ-interpolate s of y which depends continuously on y. This
gives a unique n2 EO N 2 such that s = y+ n2 and M(s, n2) = 0 for all n2 EO N 2 .
By (2.4) M(s, nl ) = 0 for all nl EO Nl , and by (2.5) any n E N(A) is of the form
n = nl + n2 with nl EO Nl , n2 E N 2 . Therefore s is a unique Sp(M, A)-inter
polate of y in y + N 2 •

Next it will be established that

M(nl' n) = 0 for all nl E Nl , n E N(A). (3.5)

Let nl E Nl , n = nl + if2 E N(A) with nl E Nl , n2 E N2 . Then by (2.4),
M(nl , n) = M(nl ,if2). Consider for any real ex, M(n2 + exnl , n2 + exnl ) =
M(il2 , n2) + exM(nl , if2) ~ 0 by (2.4), (2.3) and (2.1). Then M(nl , n2) must be
zero, or the above inequality could not hold for all ex, establishing (3.5).

Now if s is the unique Sp(M, A)-interpolate of y in y + N 2 , and s is any
other Sp(M, A)-interpolate of y, then s - s E N(A), and M(s - s, n) = 0
for all n E N(A). Letting n = s - s, we see by (2.3) that s - s E Nl • On
the other hand, if s is as above and s - s E Nl , then s = s + iiI for some
nl E Nl and M(s, n) = M(s, n) + M(nl , n) = 0 for all n EO N(A) by (3.5)
and Definition 1, so s is an Sp(M, A)-interpolate of y.

COROLLARY 4. Under the conditions of Theorem 2,

X = N 2 EB Sp(M, A).

COROLLARY 5. Under the conditions ofTheorem 2, ifspan(A) has a basis of
dimension 1', and dim(Nl ) = 1'1 , then dim(Sp(M, A» = I' + 1'1 •

The following corollary shows that if M is symmetric and nonnegative
over all of X, the orthogonality condition (2.4) is always satisfied, giving
again the conclusions of Theorem 2.

COROLLARY 6. Let X be a real Hilbert space, A afamUy ofcontinuous linear
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functionals on X, and M a continuous symmetric bilinear fimctional on X )< x
such that M(x, x) ): 0 for all x E X. Let Nl = {nl E N(A): M(ni , 111) = O}
and suppose that there is some closed subspace ofN(/l), N 2 , such that N(A) =
NI E8 N 2 and ilf is positive definite on N 2 • Thenfor any y E X, there is a unique
Sp(Nf, A)-interpolate s of y in y + N 2 , lvhich depends continuously 011 y.
Moreol'er, any other interpolate of y, S, is an SpeAr, A)-interpolate ofy (f and
on(y if s - S E NI •

Prooj: Except for the orthogonality condition (2.4), the system
{X, A, M, N(A), N l , N 2} is NI-posed. But (2.4) does hold, since for any
x E X, n1 E lV~ , M(x + anI' x + ~nl) =:: M(x, x) + 21Y..1vf(x, 111) ~ 0 for an
real (Y, implying that M(x, nI) = O.

COROLLARY 7 (Golomb [5], Jerome and Schumaker [8]). In Example 1,
for any x E X there exists an SpeAr!, A)-interpolate s, and any other intelpolare
of x, S, is an Sp(M, A)-intelpolate of x if and only (rs - S E N(A)n NCT),

4. SUFFICIENT CONDITIONS FOR WELL-POSED AND N1-POSED SYSTEMS

The next result gives a very useful condition which insures the existence
of the space N 2 of Definition 3 and Theorem 2.

THEOREM 3. Let X, A, M and N1 be given as in Definition 3 with M and
N I satisfying (2.1), (2.3) and (2.4). Suppose there is a closed subspace of
N(A), N g , such that N I + N g is offinite codimension in N(/l), and a Ini > 0
such that

(4.1)

Then there exists a closed subspace of N(A), N 2 , containing N g such that the
system {X, A, M, N(A), N I , N 2 } is NI-posed.

Prooj: Since the codimension of N 1 + N g in N(A) is finite, and
N1n Ng = {O} by (2.3) and (4.1),

(4.2)

for some finite dimensional subspace of N(A), N 4 • It will now be shown that
N 2 = N 3 ffi N 4 satisfies (2.6) as well as (2.5), demonstrating that the system
(X, A, M, N(A), N1 , N 2} is NI-posed. It will suffice to show this for the case
where N 4 is one dimensional.

Suppose N 4 consists of the span of some n4 E N(A) - (N1 EEl N g). Let
Ag be the orthogonal complement of N g in X. Then .13 can be considered
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to be a family of continuous linear functionals on X, with null space
N(Aa) = N a • Now let us define a continuous bilinear functional on X X X,
Ms , by

(4.3)for all x, y E X.MsCx, y) = l[M(x, y) + M(y, x)]

By (4.1) and (4.3),

MsC11a ,l1a) = M(l1a , lla) :;?: mill 11a 11 2 for all lla E N(Aa) = N a • (4.4)

By (4.4) the system {X, Aa , M s , N(Aa)} is well-posed, so by Theorem 1,
there is a unique Sp(Ms , Aa)-interpolate of 114 , s E 114 + N a , satisfying

for all 11a E Na . (4.5)2MsCs,l1a) = M(S,l1a) + M(11a , s) = 0

Let m = t min(M(s, s)/II s 112, n11). Then

M(as + 11a , as + lla) = a2M(s, s) + C\'.[M(s, 11a) + M(l1a , s)] + M(l1a , lla)

:;?: 2m(cx2
11 s 11

2 + II 11a I1
2
) (4.6)

:;?: m II as + 11a I12
,

by use of (4.5) and the parallelogram inequality. But span{114 + N a} =
span{s + N a}, so (4.6) establishes that M is positive definite on N4 ffi Na .
If dim(N4) > 1, the above argument may be repeated.

In the literature [9, 13] one usually finds one set of hypotheses for the unique
existence of spline interpolates and an additional one, usually in the form of
the mesh norm being sufficiently small, for error bounds. Theorem 3 can be
used [11] to show that the second requirement in all such cases is redundant
and that in fact unique existence implies that error bounds hold. This will be
treated elsewhere.

The next example utilizes Theorem 3 to demonstrate the existence of
nonselfadjoint splines which are not unique.

EXAMPLE 3. Let X = W~,2[0, l]n S where S is the set of all functions
defined on [0, 1] which are symmetric about the line x = 1/2 and W~,2[0, 1]
is the subset of all u E W~,2[O, 1] such that u (0) = u (1) = o. Let A consist
just of the linear functional A, where

AU) = f(1/6) - f(1/2) + f(5/6).

and let

1

M(u, v) = f u'v' - 7TU'V + 7TUV' - 7T2UV dt.
o

Then M(u, u) = J~ (U')2 - 7T2U2 dt :;?: 0 for all u E X by the Rayleigh Ritz
inequality with M(u, u) = 0 if and only if u is a multiple of sin 7Tt. Clearly,
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since ;\.(sin 1Tt) = 0, N I = span{sin 1Tt}. A straightforward integration by
parts shows that M(u, sin 1Tt) = °for all U E X, so (2.4) holds in addition
to (2.1) and (2.3). For the purpose of applying Theorem 3, let ,\(u) = u(1/2)
for all u E X and N 3 = {u E N(A): ?l1(U) = OJ. Note that Nl + N3 15 of
codimension 1 in N(A). Another application of the Rayleigh Ritz inequality
shows that there is a positive 111 such that M(u, u) ~ 111 Ii U !i 2 for all U E Ng .

Hence by Theorem 3 there exists a closed subspace of X, N 2 , such that
X = Nl (£> N 2 and the system {X, A, M, N(A), NI , N 2} is Nl-posed. More
over, by Theorem 2 for every u E X there exists a unique Sp(M, A}-interpolate
s of u in u + N 2 which depends continuously on u and any other interpolate
of u, S, is an Sp(M, A)-interpolate of u if and only ifs = s + 0( sin 7Tt for some
real number ex.

THEOREM 4. Let X be a real Hilbert spae, £1 a family of continuous
linear fimctionals on X, and At a continuous bilinear fimctional on X )< X.
Suppose there is a closed subspace of N(A), N 2 , such that the system
{X, .1, M, N(/l) , NI , N 2} is Nl-posed. If AI:) A is another family of con
tinuous linear functionals on X, and if the codimension (codim) of N(Il I) in
N(A) is finite, then there exists a closed subspace N?> such that the system
{X, AI, M, N(AI), NFl, NJI)} is MI'-posed.

Proof Let N I- = N I n N(Al) and N 3 = N 2 n N(lll). Then \vith
Nil) = {n E N(Al): M(n, n) = OJ, N{l' = NI-. Since codim(N(lll» in N(/l) is
finite it follows that codim(N{l» in N I is finite and codim(N3) in N 2 is finite.
Thus since N(Il) = NI EB N 2 , and Nil' C Nl , N 3 C N 2 , Nil) + N 3 must be
of finite codimension in N(Al ), and M is positive definite on N 3 • Therefore
by Theorem 3, there exists a closed subspace of N(.tll ), Nil), containing Ng

such that the system {X, Al , M, N(AI), Ni lJ , Nil'} is lvF)-posed.

COROLLARY 8. Let X be a real Hilbert space, {Ai};:o be a nested sequence
of fan/ilies of continuous linear filllctionals such that A ,+!:) Il i and
codim(N(/lHl» in N(A,) is finite for i ~ 0, and let M be a continuous bilinear
functional on X X X such that there is a closed subspace of N(Ao), N~o>, such
that the system {X, /10 , M, N(Ao), MOl, NiO l } is Nio'-posed. Then for ail
i ~ 0 there is a closed subspace of N(/li)' Nii

" such that the system
{X, ..-ii , M, N(A,), Nii" N~i)} is Niil-posed, where

Niil = {n E N(A) ; M(n, 11) = OJ.

Moreover, if for any io~ 0, Ni io ) = {O}, then for ali i ~ fo , the system
{X, Ai , M, N(A i )} is well-posed, and no restriction need be placed on
codim(N(A i +1» in N(A;).

An important application of this corollary is the situation where the system
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{X, Ao , M, N(Ao), Nio l , N~O)} is NJO)-posed and A i+1 is formed from Ai
by augmenting Ai with one continuous linear functional not in the span of
Ai, i ;> O. Then the system {X, Ai , M, N(Ai ), Niil, NJil} is Njil_posed for
all i ;> O. Note that in this application it does not matter whether or not the
dimension of the span of Ao is finite, and if Niio> = {O}, then A i +1 may be
formed from Ai by augmenting Ai with any set of continuous linear func
tionals, for all i ;> if) .

5. EXTREMAL RESULTS

For a given real Hilbert space X and continuous bilinear functional on
X X X, M, it will be useful to associate another continuous bilinear functional
on X X X, M s ' defined by

Mix, y) = t[M(x, y) + M(y, x)] for all x, y E X. (5.1)

Then Ms(x, x) = M(x, x) for all x E X, and if M is symmetric, M,,(x, y) =
M(x, y) for all x, y E X. The following lemma generalizes a result usually
referred to as the "first integral relation" [13, Theorem 4].

LEMMA 1. Let X be a real Hilbert space, A a family of continuous linear
functionals on X, and M a continuous bilinear functional on X X X such that
M(n, n) ;> 0 for all n E N(A). Then for any x E X if s is an Sp(Ms , A)-inter
polate of x,

M(x, x) = M(x - s, x - s) + M(s, s). (5.2)

Proof Since s is an Sp(Ms , A)-interpolate of x, Mis, x - s) = 0, so

M(x, x) = M(x - s, x - s) + 2MsCs, x - s) + M(s, s)

= M(x - s, x - s) + M(s, s).

The next theorem gives an extremal result for M-splines generalizing
[10, Theorem 7].

THEOREM 5. Let X be a real Hilbert space, A afamily of continuous linear
functionals on X, and M a continuous bilinear functional on X X X. Suppose
M(n, n) ;> 0 for all n E N(A), and that there is a closed subspace N 2 of N(A)
such that the system {X, A, M s , N(A), N 1 , N 2} is N1-posed where



M-SPLINES 11

Then for any y E X;

(i) there is at least one Sp(M" , A)-interpolate s ofy,

(ii) M(s, s) = minmex{M(x, x); x is a A-interpolate ofy}, (5.3)

(iii) if x is a A-interpolate ofy, and M(x, x) = M(s, s),

then x - s E N i and x is also an Sp(Ms , A)-interpolate of y.

Proof Property i follows immediately from Theorem 2. Suppose x is
any A-interpolate of y. Then s is also an Sp(Jl1s , A)-interpolate of x, and
since x - s E N(A), M(x - s, x - s) ;;>- 0 and (5.2) of the lemma implies
that M(x, x) M(s, s) giving property (ii). If, in addition, Jl-f(x, x) = M(s, s),
then (5.2) of the lemma implies that Ms(x - s, x - s) 0, so x - S E NI ,

and by Theorem 2, x E Sp(Ms , A).

COROLLARY 9. Under the hypothesis of Theorem 5, if N i = {O} then the
Sp(Ms ,/I)-interpolate, s, of y gives the unique solution to the extremal
problem (5.3).

COROLLARY 10. Let X be a real Hilbert space, A a family of continuous
linear functionals on X, and M a continuous bilinear functional on X X X
such that M(x, x) ;;>- 0 for all x E X. Suppose there are closed subspaces of
N(.1), NI and N2 ,such that N(A) = NI EB N2 , M(nI ,111) 0 for all 111 E Ni ,

and M(n2 , n2) ~ m II n2 WI. for all n2 E N 2 • Then/or any y E X, there is at least
one Sp(Ms ,A)-interpolate s ofy, and the extremalproblem (5.3) is sok'ed by s.
Moreover, if x is any other A-interpolate of y which minimizes lvI as in (5.3),
then x E Sp(Ms , A) and x - S E N1 •

Proof Equations (2.1), (2,3), (2.5) and (2.6) are explicitly satisfied by
M s , N1 and N2 • Just as in the proof of Corollary 6,

M(x, x) Mix, x) 0 for an x E X implies that M.(x, n;J = 0

for all x EX, nl E NI . Therefore the orthogonality condition (2.4) also holds
and the system {X, A, M s , NC/l), NI , N 2} is NI-posed. Thus Theorem 5
applies.

Theorem 5 and Corollary 9 are useful in identifying M-splines with other
spline characterizations. For instance in Example 2 let M be given by

M(u, v) = f rait)[Diu(t)][DiL{t)] dt,
i=O a

let A be such that the system {Wn ,2[a, b], A, M, N(A)} is well-posed, and let
s be the unique Sp(M, A)-interpolate of f E Wn ,2[a, bJ. If A consists solely
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of the Hermite type functionals considered in [10], then Theorem 7 of [lOJ
asserts that the element minimizing (5.3) is the unique generalized L-spline
interpolate s of f, and hence S = s by Corollary 9. Similar arguments show
that the y-elliptic splines of Schultz [14], the R-splines of Golomb [5] and
the Lg-splines ofJerome and Schumaker [8] are also special cases of M-splines.

The next result generalizes Theorem 6 of [IOJ, and also implicitly offers
a generalization of the property P used in that paper.

THEOREM 6. Let X be a real Hilbert space and {Ai: i ? O} be a nested
sequence offamilies ofcontinuous linear functionals on X, such that A i+1 :J Ai
and the codimension of N(Ai+1) in N(Ai) is finite, for all i ? O. Suppose M is
a continuous bilinear functional on X X X such that M(x, x) ? 0 for all
x E N(Ao), and the system {X, Ao , M s ' N(Ao), NiO), N~O)} is Nl-posed. Then
for any x E X, and all i ? 0;

(i) the system {X, Ai , M s , N(Ai), Nii), N~i)} is Nii)-posed,

(ii) there is at least one Sp(Ms , A;)-interpolate Si of x,

(iii) M(x - Si , X - Si) = min{M(x - s, x - s):

S E Sp(Ms , Ai) n U}, where U = {y: y is a Ao-interpolate of x}.

IfM(y, y) ? 0 for all y E X, then

(iv) M(x - Si , X - Si) = min{M(x - s, x - s): S E Sp(Ms , Ai)}'

Proof Property i follows immediately from Corollary 8, and property (ii)
follows from property (i) and Theorem 2. Suppose SE Sp(Ms , Ai)' Then
Si - s is an Sp(Ms , Ai)-interpolate of x - s, so substituting x - S for x
and Si - S for s in (5.2) of Lemma 1 gives

M(x - s, x - s) = M(x - Si , X - Si) + M(Si - S, Si - s). (5.4)

If s is also in U, then Si - S E N(Ao) so M(Si - S, Si - s) ? 0, and from (5.4),
M(x - S, x - s) ? M(x - Si , X - Si) establishing property (iii). Similarly,
if M( y, y) ? 0 for all y E X, then again M(Si - S, Si - s) ? 0 giving
property (iv) from (5.4).

6. CONVERGENCE OF lVI-SPLINES

The next theorem generalizes a result of Golomb [5, Corollary 7.1].

THEOREM 7. Let X be a real Hilbert space, {Ai}~f) a nested sequence of
families of continuous linear fimctionals on X with A i +1:J Ai , i ? 0, and
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M a continuous symmetric bilinear functional on X X X. Suppose the system
{X, .110 , M, N(Ao)} is well-posed, and let A", = U:o Ai' Then for all i ?: 0
and every x E X, there is a unique SPlAt!, Ai)-interpolate Si of x, and a unique
Sp(M, Aro)-interpolate of x, Soo , where {s;} and s'" depend continuously on x.
Moreover, limi-->co Si = Scxo and limi-->oc M(s, , s,) = 11/[(soo , sa:;}.

Proof The system {X, .110 , M, N(/lo)} is well-posed, so there exists
an m > 0 such that

M(n, n) ?: mil n 11
2 for all n E N(ilo). (6.1)

Hence (6.1) also holds for all n E N(A ro ) and all n E N(A i), and thus the systems
{X, .11 00 , M, N(A oo)} and {X, Ai , M, N(Ai)} for all i?: 0 are well-posed,
and the first part of the theorem follows from Theorem 1. Since s", is a

Arinterpolate of Sj E Sp(M, A j) for all j ?: 0, and if j ?: i ?: 0, Sj is a
Ai-interpolate of s, E Sp(M, Ai), property (ii) of Theorem 5 gives

Lemma 1 then gives,

for all j?: i ?: O. (6.2)

(6.3)

since Si is an Sp(M, Ai)-interpolate of Sj' From (6.2) and (6.3) it follows
thatlimi.i-->oo M(Si - Si, Si - Si) = 0, and by (6.1), {SiJ:O is a Cauchy
sequence. Let soo = limi-->CXO Si' Then it may easily be seen that Sco = s"',
and the result follows.

As an application of this theorem, consider a variation of Example 2 with
{Ai};x'~o being a nested sequence of families of continuous linear functionals
on W",2[a, b], n ;:;;; 1, and {3iJ:o the associated partition norms. Suppose
.2fi --->- O. Then there is an io ?: °such that the system {W",2[a, b], A io ' 11-1,
N(Ai )} is well-posed, and for everyf E W"·2[a, b) there is a unique Sp(21.f, .....1,)-

o 00

interpolate 5i for all i ?: io . Let Sc£ be the Sp(M, U;~o ./l;)-interpolate of f,
and let x E [a, b]. Since 3 i --->- 0, there is a sequence {Xi} with Xi E Ll i such that
Xi --->- X. But f(Xi) = S,(Xi) = Sx(Xi), so f(x) = sx,(x) by the continuity of
f and Se<) • Therefore f - Soo , and by Theorem 7,

lim ilf - Si I!" = O.
[-tCC'

(6.4)

The convergence in the Sobolev norm given by (6.4) may be easily shown
to imply uniform convergence of Djsi to Dif on [a, b] for 0 ~ j ~ n - 1
and L2 convergence whenj = n.
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